Tag Archives: red bull

Tech Highlights: 2017 in illustrations (so far)

Procrastinating a little bit from revision by sharing some of the illustrations that I’ve done over the season so far. You can find the associated articles on Motorsport Week that explain the effects of these developments in detail.

RS17 RW

The teams had barely hit the track when Renault were called out over their rear wing support design (inset). The design was edited in a cheekily manner, dodging the regulations that stipulate that the DRS actuator must be isolated by slimming the support.

MCL32 FW_Aus_highlight

McLaren’s pace in the final sector in Barcelona shows that their chassis is reasonable, certainly above the other midfield runners but not quite there with the top dogs. The team’s aero department are constantly churning out alterations to the car – the front wing is tweaked almost every race weekend.

FW40_FW_China

The FW40 isn’t a striking car in design terms but the chassis clearly works cohesively on both aerodynamic and mechanical fronts. The above front wing was altered twice within the same amount of weeks between Australia and China.  

SF70H_FW comparison_annotations

Ferrari’s development rate has been refreshing in 2017. In Bahrain the Scuderia introduced their front wing proper for the season (left), featuring six elements cutting the entire span and a more pronounced vortex tunnel.

vjm10_bargeboards

Pretty in pink: It doesn’t matter what colour the Force India is in, the team continue to punch well above their weight despite the regulation changes. The design office is creative and not afraid to produce complex geometries such as their bargeboards and splitter above.

w08RW_spain

Mercedes unleashed an extensive aerodynamic overhaul to the W08 in Barcelona. The nose, bargeboards and engine cover were heavily revised while the spoon-shaped rear wing was ousted for a conventional design. A monkey seat winglet straddles the rear crash structure to draw the exhaust plume upwards.

RB13_bargeboard

Red Bull’s ‘struggles’ has pushed Adrian Newey back into action, although it would be unfair to say that they got the car wrong. The RB13’s clean design leans more towards drag reduction than outright downforce and the car is often up top of the speed trap charts. More complex bargeboards arrived in Spain – is this the start of their come back?

2017 Car Launch Analysis

Haven’t managed to do all of the cars this year but I’ve covered five of the ten for Motorsport Week. Here are the links:

  • Mercedes W08 – Huge wheelbase and complex bodywork, but is it a winner?
  • Red Bull RB13 – Don’t let the outward simplicity of this car fool you…
  • Ferrari SF70H – Find out about those crazy sidepods!
  • McLaren MCL32 – Can McLaren emerge from the midfield in 2017?
  • Renault R.S.17 – Detailed from the get-go, watch out for Renault this season

 

2017 Barcelona test (1) tech review

I don’t normally cover testing anymore but a big thank you to Charlie Stephenson (@myboringhandle) for letting me use some excellent photos he took from Barcelona last week. This short blog post will cover some general tech themes to look out for in 2017 and who I think is the fastest after the first test.

Shark fins and T-wings

f1_test_17040

Love them or hate them, shark fins are (probably (depending on what Ross Brawn has to say in the near future)) here to stay this season. The lower and wider rear wings are in the firing line of  the turbulent wake coming off the front tyres and front wing, so a fin is used to manage the air over the rear of the car. They are particularly useful in yaw situations as the car’s wheels are turning and the wake is blocked from washing over the rear wing by the large bodywork.

Mercedes have taken things a step further by integrating a chimney into their fin – a small opening has been made into the top to cool the internals. Whilst the internal aero won’t so much be pushing hot air through it, the freestream flow above the car will pull out the higher pressure air inside the car.

f1_test_17047

 

Then there’s the addition of T-wings. Funnily enough, this area of the car has been opened up completely by accident. Up until October there was no bounding box to allow for such devices but in the final release of the regulations somebody made a boo-boo and, of course, the teams have exploited it. T-wings are tiny winglets that help tidy up airflow ahead of the rear wing, kicking air upwards to help the aerostructures at the rear of the car. Williams (above image) have even put two devices on the car whilst Mercedes (below) have doubled them up to induce a greater effect.

F1_TEST_17214.jpg

The Mercedes version bends over at the wing tips to prevent vortices forming, although some teams may actually prefer an open ended solution. Standalone devices such as on the Mercedes look ridiculous in my opinion but I’m not overly fussed if they sprout from the fin. This area of the car could be festooned with winglets and vanes by mid-season if the situation isn’t nipped in the bud soon.

 

Testing methods

We haven’t seen anything too outlandish in terms of sensors so far but the usual methods of checking whether on-track data aligns with that seen in the factory were very much evident at the first test.

f1_test_17019

The larger front tyres have resulted in complex bargeboards and turning vanes to shield the sidepods and floor from turbulence. Large pitot tube arrays are mounted behind the tyre to assess the pressure and velocity of the wake and how it changes in cornering situations. This data can then be used to develop new aero devices around the cockpit, or adjusted to suit a new front wing design.

f1_test_17037

Flow-visualisation paint (or flo-viz) is a paraffin based liquid that is used to map airflow over the car’s surface. This is particularly useful for getting a baseline understanding of how the air is being influenced by the car’s bodywork on track, which can be compared to flo-viz tests in the wind tunnel and stream traces in CFD simulations. It can also identify areas of flow separation.

The Force India above is absolutely plastered with the stuff. Use of the same colour can be quite revealing to prying eyes, especially in large quantities. Teams can also use various colour combinations of flo-viz to check for cross flow from different parts of the car.

Rake angle

Rake angle is the car’s front down, bottom up attitude relative to the track surface, and increasing this angle has huge benefits. Getting the splitter at the front of the car closer to the floor induces high speed flow along the floor, while a higher rear end essentially creates a larger diffuser for air to expand from. This combination produces a lot more downforce without a huge drag penalty – even a few millimeters of additional rake brings incredible performance gains.

OK, so why aren’t all the teams jacking up the rear ride height? Well, as rake angle goes up, the sides of the floor move away from the ground, which reduces ground effect as low pressure leaks from the underfloor. To increase rake angle you must also seal the floor using complex aerostructures that stem from the front wing. We often talk about the Y250 vortex for a reason: a stable vortex that can span a great distance along the car will improve the seal. The larger 2017 bargeboards and turning vanes will also help prevent high velocity flow escaping.

f1_test_17183

Red Bull have long been the kings of using rake as their underlying aerodynamic concept. The relative simplicity of the RB13 compared to the Mercedes and the Ferrari should not be a sign of the team’s lack of creativity around the new regulations, as getting the car to sit the way it does in the above image takes a lot of work. Less complex bodywork will also decrease drag, an area that Red Bull have been working hard on in recent years.

f1_test_17044

Although not quite as extreme as Red Bull, Ferrari are one of a number of teams that have also pursued extra rake to find more downforce. As you can see above, there is ever-increasing daylight between the car and the track the further rearward you look.

f1_test_17091

McLaren stole Peter Prodromou from Red Bull in 2014 and his influence on the design of the car has become clearer over the past two seasons. Prodromou was Adrian Newey’s right hand man at Red Bull during their prime and his presence in Woking has definitely been felt judging by the MCL32 chassis design. Beautiful front wings, high rake angle and a degree of simplicity are all Red Bull trademarks finding their way onto the Woking cars. It’s a pity that Honda appear to be bloody useless again this year, but let’s wait and see on that…

So, who’s fastest at the moment?

Mercedes. Yes, they grabbed the headline time on Ultra-softs but their impressive long run pace and awesome reliability show just how mighty this team really are. I must admit that Ferrari have also looked pretty good so far and I’ve been impressed by Renault. Perhaps I’ll have a review of things next week to form a full pecking order before Melbourne. God, I’m excited!

Tech Highlights: Mercedes/Red Bull ‘energy recovery’ suspension

If you haven’t heard already, F1 is set to ban the hydraulic heave springs that many teams (notably Mercedes) have been playing with over the past 12-15 months. Although it is not an official ban as yet, a technical directive has been issued to the teams addressing the claims that Ferrari raised in a recent letter to the FIA. Ferrari claims that the component can be classed under the ‘moveable aerodynamics’ catch-all phrase in the regulations, and although it has been discussed in great length over the year it is only now that the Scuderia have chosen to make a formal move against the competition. In this blog post we will aim to cover what the hydraulic heave element does and why a ban at this stage of the 2017 developments could have an impact on the pecking order. Continue reading

Analysis: AM-RB 001

I don’t know about you but since the news that Red Bull’s F1 design guru Adrian Newey was teaming up with Aston Martin for a ‘new project’, I’ve been waiting with bated breath for what kind of machine the two could produce together. Despite the lengthy wait, nothing could quite prepare any of us for what we saw when the AM-RB 001 prototype was showcased in early July.

AM-RB 001

 

Once launched the codename will be changed to something more elegant (and probably beginning with a ‘V’) but no doubt the bold body shapes that make it the eye catching will remain. It’s a little Marmite (personally I love it) however every carbon fibre-formed surface has been meticulously sculpted on CAE software to produce a car that meets Newey’s intense focus on aerodynamics. Continue reading

Tech Analysis of ALL 2016 cars!

As you may (or may not) know, all of my technical analysis pieces for the 2016 F1 cars are up on F1 Fanatic this year. However I’ve made it really easy for you to find your favourite car/team by linking them all in this post! So here you are – enjoy!

  • Mercedes W07 – Can the World Champions continue their winning streak?
  • Ferrari SF16-H – Ferrari’s bold winter strategy could bring them a step closer to the Mercs
  • Williams FW38 – The FW38 is arguably the most important car for Williams in a long time
  • Red Bull RB12 – 2016 may be a stop-gap for the Bulls, but don’t discount them for a podium
  • Force India VJM09 – Will Force India be able to keep pace with the bigger budget teams?
  • Renault R.S.16 – It’s Renault’s first year back as a Constructor, so how will the R.S.16 fare?
  • Toro Rosso STR11 – Arguably the boldest car on the grid, Toro Rosso mean business in 2016
  • Sauber C35 – Sauber have their eyes on 2017, but the C35 is nonetheless a solid evolution
  • McLaren MP4-31 – Time to step up, McLaren, and the new car shows it
  • Manor Racing MRT05 – Now with Mercedes propulsion, can Manor fight for points?
  • Haas VF-16 – Debutants Haas have gone down the listed parts strategy. And it could work!

Note: This post will be updated as the articles are released.

2015 Brazilian GP Tech Highlights

With changes made to the Interlagos circuit’s kerbs (now 50mm higher in places) and the track conditions affected by the weather conditions last year, Pirelli’s pre-race assessment suggested a substantial drop in laptime. This laptime deficit turned out to be over a second over 2014, with Nico Rosberg’s average speed through turns one and two being 15kph slower on his pole lap than the previous year emphasising the alterations on track.

Whilst this will have required some rethinking on the mechanical side of the setup, aero also has a key role in Brazil. Although the altitude of roughly 800m above sea level is a far cry from that of Mexico a few weeks’ ago, it still has a significant impact on the aerodynamic levels of the car and the performance of the power units.

This has meant that the teams have changed a few items on the car despite it being the latter stages of the season. We also got to see the performance of Renault’s “upgraded” power unit (you will understand why I quote that later) and Mercedes had an intriguing test device on show. Let’s find out more on this now…

Mercedes

As the season begins to draw to a close, it becomes more obvious that the teams’ attentions have been diverted to 2016. Whilst this means that there are fewer developments added to the current cars, there are often experimental components that are run to assess how the design of next year’s car is coming along.

Mercedes are the first to provide clues as to what is in store on the W07, by trialing what appeared to be an S-duct during free practice on Friday.

The S-duct was pioneered by Sauber in 2013 when stepped noses were in use and has since been copied by Red Bull, McLaren and Force India. Toro Rosso have also briefly used a version of their own, too.

Its purpose is to channel airflow from beneath the chassis up to the top side and over the top of the front bulkhead through an ‘s’ shaped duct. It makes use of slightly slower boundary layer flow beneath the car, exiting into generally untidy air and keeping flow attached to the top of the car. The device allows for more extreme nose designs, which is why they are not necessarily a bolt-on performance part – they act as a link between different aero structures around the centreline at the front of the car.

W06Sduct

On closer inspection, however, it appears as if Mercedes were testing a dummy of the duct’s exit on top of the car, rather than a full duct assembly. As you can see in the illustration above, they have simply replaced the conventional panel that covers the inboard front suspension elements for one with an rearward facing duct and two interesting bulges eitherside.

Both drivers used the panel on Friday, with Rosberg’s duct taped up and Lewis Hamilton’s open.

There are a few intriguing details about this test that leave us questioning the direction they are taking with the device.

The bulges are positioned right above where the heave spring peeps out above the monocoque but, on the W06, the spring is sunk far enough into the chassis to not require any blisters in the bodywork above. This suggests that Mercedes are considering changing the suspension geometry for 2016 which would require a higher heave element position.

There was rumour that Hamilton ran a revised suspension layout in FP1, but these are not confirmed reports, so the team may have wanted to test the aero effect of a new suspension design.

Mercedes did indeed use flo-vis paint along the nose and the top of the chassis to investigate but considering that the duct wasn’t a fully operating assembly, we are left wondering as to what the purpose of doing it was.

My guess is that they are isolating the duct from the rest of the car to make sure that its introduction will not have a negative influence on the overall aerodynamics.

It is also worth noting that there was no obvious inlet at the bottom of car to provide air to any potential system they could be producing. However there is a very good explanation for this as Matt (SomersF1) has highlighted brilliantly in his blog post on the subject.

Unlike most teams on the grid, there are no visual signs that Mercedes have a driver cooling slot at the front of the car. There are, though, a few clues that suggest they do have an inlet hole in the underside of the nose, although sometimes an additional inlet is added on top of the car for hotter locations. This hole leads to a thin slot along the bottom of the front bulkhead which is visible when the nose of the car is off, before passing into the footwell of the cockpit.

Conventional S-ducts involve using a duct that covers over some of the internals in the front bulkhead, including things like the brake fluid reservoirs. This compromises the position of the duct’s exit point, which is often well ahead of the top flat surface of the chassis and instead along the upward curve from the nose backwards (defined by the regulations).

Mercedes could utilise their current driver cooling inlet by manufacturing an internal duct that exits through the aperture made for the heave spring, which coincidentally appears to be where the test panel’s duct exit begins. This allows the exit of the duct to sit nicely on top of the car, with air exiting in parallel to the chassis’ surface.

A drawback in doing such would be that air is passing around the heave spring and creating some turbulence, although it is difficult to judge how that would affect the duct’s performance.

I am sure we will get more details on it if it reappears before the year closes.

Renault

Although it has been ready since the US grand prix, it is only until now that Red Bull have opted to debut Renault’s new power unit in Brazil. It turns out the original token expenditure of 11 out of 12 is incorrect, instead the a partial upgrade of just 7 tokens was used. These were used solely on the combustion section of the engine, focusing on power output, driveability and fuel efficiency.

The remaining four are expected to be aimed at the turbocharger. This upgrade could not be introduced because of part availability and further changes needed to the exhaust system to make the upgrade work in unison. It is unclear whether Red Bull will want to use the full upgrade in Abu Dhabi, but considering that their ‘partnership’ with Renault is set to continue into 2016 I wouldn’t see a reason not to. Renault will also be quite keen to see how it performs on track, too.

Initially there was talk of a 0.1-0.2s laptime gain, but Daniel Ricciardo was in fact 7kph slower down the main straight than teammate Daniil Kvyat (who used the older spec unit). Whilst this seems a bit shocking at first, it would be unfair to say the upgrade has been a failure (yet). The final developments need to come through and the data analysed to fine-tune them in order to obtain a full assessment of Renault’s progress, but for now it doesn’t look great!

Toro Rosso

The Faenza-based team fancy their chances of grabbing sixth in the Constructors’ championship ahead of Lotus, as they sit just 9 points behind. Both drivers – Max Verstappen in particular – have hit good form and the STR10 certainly has the pace to match (barring straightline speed, of course).

To counter this deficit, Toro Rosso introduced yet another iteration of their rear wing by modifying the top flaps to reduce drag. Like Mercedes have done in the previous few seasons, the outer edges have been rounded down as they meet the endplate, reducing the angle of attack of the flap and decreasing the size of the wingtip vortices formed as result.