Tag Archives: aerodynamics

Tech Highlights: Top aero features of 2017

As Formula 1 introduced a raft of changes ahead of the new season, 2017 was always likely to produce some new features on the aerodynamic front. Here are some of the key highlights from this year.

T-wings

The appearance of T-wings on this year’s cars is a consequence of the changing of the rear wing dimensions for 2017. During the rewriting of the rules a small region that was previously occupied by the outgoing higher rear wings was accidently left unattended. The extruded 50 x 750 mm area was instantly taken advantage of by the teams, with the majority of them converging on some form of twin element design by mid-season.

w08_twing

Mercedes were one of the first teams to debut a T-wing in 2017

On its own the T-wing produces some downforce with minimal drag due to its wide span and extremely short 50 mm chord length. This in itself is a good enough reason to install one on the car, however it also has other positive implications.

An aerofoil with even a small amount of camber will generate an air pressure difference between its upper and lower surfaces. The air will try to equalise itself as quickly as possible, and the best way for it to do that is for the high pressure flow on top of the wing to flip underneath at the wing tips. This causes the air to rotate, generating a vortex due to the flow’s momentum.

The rear wing produces huge tip vortices due to its high angle of attack, which the teams try to control using endplates. Although the presence of a vortex indicates induced drag, they can beneficial to the car’s aerodynamics as they help pull airflow from elsewhere. You can either use them to pull air over bodywork to produce more downforce, or move turbulence away from more sensitive regions of the car (i.e. Y250 vortex).

The small tip vortex rolling up on one side of the T-wing travels backwards and entwines with its corresponding rear wing tip vortex behind, creating a slightly more powerful vortex overall. This amplifies its suction effect and therefore draws out more air from under the rear wing, thus enhancing rear downforce. It may only be worth a fraction of a second, less than a tenth. But considering its simplicity and minimal manufacturing cost, it is an item that’s definitely worth having.

Serrated bodywork

A lot of previously blocked areas of the car have been opened up for development for 2017, including the bargeboards and the floor surrounding them. While we expected to see the sprouting of flamboyant geometries and the arrangement of multiple turning vanes, it is still fascinating to see the intricate detailing that separates even the top teams.

In 2016 Mercedes started to play with serrated bodywork to manipulate the air more aggressively. Dividing an angled geometry into several sections allows flow to migrate between the two sides, reducing the chances of flow separation. In turn, mini vortices form across each section, which then all roll up into one powerful vortex projected aft of the bodywork. This trend has been carried into 2017: Mercedes have even chosen to stagger a series of mini turning vanes – each producing their own vortex – along the bargeboard’s footplate to provide the same effect.

RS17 BB

This technique can be found on other sections of the car too. Like a vertically mounted turning vane, the floor of the car has a pressure gradient between its upper and lower surfaces – this is due to ground effect. Serrating the floor/bargeboard footplate has become a popular choice for plenty of teams, including Force India, Ferrari and Renault (pictured), as it helps energise the air flowing along the flanks of the car. Air naturally wants to migrate underneath the car, and by introducing it in this fashion the direction and intensity of the flow can be further dictated. This will help seal the floor along the side of the car, allowing teams to run a higher rake angle.

Mercedes cape nose

The caped nose Mercedes introduced in Spain represents one of the most dramatic changes in frontal aero philosophy in recent years. Dubbed the cape due to its trailing, flared silhouette, its job is to direct clean air into the bargeboard area and enhance the Y250 vortex produced at the inboard section of the front wing. It replaces the common solution of a series of turning vanes that hang under the front bulkhead, which offers slightly less efficiency compared to the ‘mini diffuser’ geometry that the W08 now has.

IMG_0048

Image courtesy of Alessandro Berrageiz (@Berrageiz)

The cape’s lipped leading edge is designed to produce a vortex along its periphery, while the smooth underside – which hosts the inlet for the S-duct – aids the transition of laminar flow underneath the bodywork and out of the diffuser-like channels at the back.

The chances of seeing another rival introduce this solution before the end of the season are pretty slim, but it is perhaps something that we might see creep onto other cars from 2018 onwards.

Advertisements

Analysis: 2018 Halo and its performance implications

Right, hello everyone. You may have noticed a few other posts pop up on here lately but this one is by me again. I, like many of you, was not happy at all when the FIA announced that F1 would be adopting the Halo cockpit protection device from 2018 onwards but no doubt I’ll continue watching next year…

However I’ve come to accept that the sport must do everything it can to improve safety (especially in the wake of Jules Bianchi’s accident) and decided to do an assessment of how the Halo will impact the cars both visually and from a performance standpoint.

Now, there are a few things you might have missed about the implementation of the device due to the red mist descending. Firstly, the teams can paint the ‘flip flop’ in whatever colour they like and secondly, and most importantly, they are allowed to wrap it in a 30 mm fairing to tidy up the air around it. Considering that the Halo is in the firing line of freestream flow around the airbox, the structure mostly hinders the intake of clean air to the ICE, cooling and flow to the rear wing. Other side effects include at least 20 kg extra weight and possibly some disturbances to the air over the sidepod.

The Halo’s basic design will be refined by the FIA between now and the start of 2018. In testing teams have pinned it to the tub in different ways, some slightly better looking than others. Whether every team will have to fix it in the same position remains unknown. The small fairing does however present some opportunities to shape airflow in a more desirable way, although they won’t want too bulk up the tubing much more to reduce blockage and thus decrease drag.

2018 side & plan (halo)

It is for this reason that we could see a minimal approach to the fairing. The tubing’s downward slopes induce some lift, but this could be mitigated slightly by the additional bodywork. Note the higher and wider position of the airbox, similar to that of this year’s Renault, to clear it from disrupted air. I must admit that from the side and plan views of the car it doesn’t look too bad, particularly on the current cars.

Halo review

Another possible design for the fairing is to use the sides of the structure as a downwash device over the top of the sidepod, with the two rearward fixings splayed outwards and the bodywork twisted in a similar fashion. Vortexes could roll up along the sides and direct flow towards the top of the diffuser. Again, this depends on where the FIA permit the mounting of the device on the chassis.

While the Halo is in a fairly neutral place from a mechanical perspective (its mass is at the centre of the car, albeit quite high up), it’s in a frustrating position from an aero point of view. The teams and helmet companies have worked extensively on tidying up the air around the headrest in recent years and now they’ll have a new, more complex challenge. I’m not sure how aggressive the teams will get with the fairing’s design – or whether there are any additional regulations surrounding it that further limit their scope – but I can’t see any crazy solutions emerging because it’s in a place where they don’t really want to manipulate the air. Perhaps I’m wrong and someone has already come up with something much better. I hope I am.

Analysis: AM-RB 001

I don’t know about you but since the news that Red Bull’s F1 design guru Adrian Newey was teaming up with Aston Martin for a ‘new project’, I’ve been waiting with bated breath for what kind of machine the two could produce together. Despite the lengthy wait, nothing could quite prepare any of us for what we saw when the AM-RB 001 prototype was showcased in early July.

AM-RB 001

 

Once launched the codename will be changed to something more elegant (and probably beginning with a ‘V’) but no doubt the bold body shapes that make it the eye catching will remain. It’s a little Marmite (personally I love it) however every carbon fibre-formed surface has been meticulously sculpted on CAE software to produce a car that meets Newey’s intense focus on aerodynamics. Continue reading

Analysis: The future of F1 design?

If you are even remotely interested in Formula 1 you will be aware of the current debate being had over whether the current formula is just not up to scratch. Is it the speed of the cars? The tyre degradation? The power units? DRS? These are some of the many questions that have caused the FIA to reconsider the direction F1 is taking and how to alter it for the better.

This blog post is not going to go into the ins and outs of the debate (thank goodness), but I will now share with you and explain the ideas behind my 2017 – the year the FIA want to get things done by –  F1 car concept using a couple of illustrations I did a few months’ ago. Seeing as F1 does not return until next weekend, now seemed like a good time to post this piece.

The general idea behind this car is to follow what the FIA is wanting to do, which is make them faster. Personally, this is not what I would do if I was in charge but I’d better get used to designing around regulations I don’t like! This car therefore represents an emphasis on ground effect and underfloor aerodynamic performance to improve laptime. It should also make following another car in turbulent air a bit less of a challenge as a result.

Bare in mind that these are my personal views on the subject and I am always very interested to hear your comments on this! Please leave them down below (pretty please).

2017 prediction

This is my first interpretation of the very basic outline that the FIA have suggested F1 cars should look like come 2017. It is not overly aggressive as I’ve tried to be fairly realistic rather than display some crazy, wing-clustered machine! Continue reading

2014 German GP Tech Highlights

Hockenheim represents a demanding blend of both high top speed and good cornering grip. Unless you’re in a Mercedes it is very difficult to balance the car for this type of circuit. Red Bull had phenomenal pace in the final, tight sector but where half a second down in the middle relative the main competition. Williams by contrast – who have a slippery car in a straight line – had a solid first and middle sector, as proved during the latter stages of the race when Valtteri Bottas held off Lewis Hamilton.

As far as upgrades go there were a few finer details across all teams, but it was McLaren who stood out the most this weekend. Continue reading