Category Archives: Technical Highlights

Tech Highlights: Mercedes rear suspension tweaks

As part of a number of changes under the skin of the car to address the issues they faced last year, Mercedes have added an extension to the rear upright where the upper wishbone joins (here’s an image of it). In my analysis of the Mercedes W09 for Race Fans I mistakenly wrote that the rear upper wishbone design raises the rear roll centre. I must’ve messed up my sketches, as the raised position actually lowers the rear roll centre.

Lowering the rear roll centre loads up the rear tyre upon steering input, producing better traction and overall grip amongst other benefits. As with any of these things there are pros and cons of doing this but I won’t delve into them in too much detail here. This post mainly explores how Mercedes have achieved a lower rear roll centre.

If you don’t know about roll centres and other suspension related terms then I’ve got a blog post on it here.

IMG_2596

The above sketch shows how the roll centre (RC) is influenced by the angle and position of the upper and lower wishbones (apologies for the terrible image quality, if you’d like to buy a poor student a new iPhone then please let me know). RC1 is the reference suspension geometry, drawn in pencil.

RC2 (blue lines) depicts the effects of the raised upper wishbone Mercedes are utilising. As you can see the substantial height increase from the upright extension slightly lowers the RC compared to RC1.

RC3 (black lines) shows that the angle of the wishbones has a much greater influence on the RC, as the upper wishbone is kept in the same position at the upright but its angle to the horizontal has increased. In this case RC3 is higher than both RC1 and RC2.

The wishbone angle and position is limited by aerodynamic idealisations, keeping the mass of the car as low as possible and regulations. They all sort of play off eachother too, adding to the complication.

The teams often encase the lower wishbone and drive shafts into one aerodynamic fairing, preventing the effects of shaft rotation in freestream air from effecting the performance of the diffuser immediately behind (Google ‘Magnus effect’ for more on this). This limits the height at which the lower wishbone sits, so adjustments to the RC can only be achieved through the upper wishbone alignment and the centre of gravity (CoG). Lowering the RC can be done by angling the top wishbone upwards, but then the air would not pass perpendicularly over the entire structure and the inboard bodywork would have to be raised to cover it. This would be detrimental to the airflow over the car and also induce unwanted lift (i.e. increased drag). Aerodynamics govern the majority of the car’s performance, so we are therefore left with raising the upper wishbone to achieve the desired lower RC.

Lowering the CoG is also critical to car performance. The gearbox hosts the rear suspension mounts: machined aluminium clevises that transfer load through to, in most cases, a carbon case. With strength often comes added weight, so ideally the wishbones should be mounted as low as possible while achieving the designed suspension characteristics. It is for this reason that we have seen the likes of Williams’s impressively low gearbox case in 2011.

Finally, the location of the single exhaust exit is regulated and limits what can be done with the upper wishbone’s position. The exhaust passes over the mounting point of the trailing arm of the wishbone, but with the mounting point so high Mercedes have had to weld in a bridged section to the pipe to do so. Both aerodynamics and CoG play roles here too, as the mass of the pipe should be kept as low as possible while controlling the exhaust plume’s position and interaction with the surrounding surfaces.

Advertisements

Tech Highlights: Top aero features of 2017

As Formula 1 introduced a raft of changes ahead of the new season, 2017 was always likely to produce some new features on the aerodynamic front. Here are some of the key highlights from this year.

T-wings

The appearance of T-wings on this year’s cars is a consequence of the changing of the rear wing dimensions for 2017. During the rewriting of the rules a small region that was previously occupied by the outgoing higher rear wings was accidently left unattended. The extruded 50 x 750 mm area was instantly taken advantage of by the teams, with the majority of them converging on some form of twin element design by mid-season.

w08_twing

Mercedes were one of the first teams to debut a T-wing in 2017

Continue reading

Tech Highlights: 2017 in illustrations (so far)

Procrastinating a little bit from revision by sharing some of the illustrations that I’ve done over the season so far. You can find the associated articles on Motorsport Week that explain the effects of these developments in detail.

RS17 RW

The teams had barely hit the track when Renault were called out over their rear wing support design (inset). The design was edited in a cheekily manner, dodging the regulations that stipulate that the DRS actuator must be isolated by slimming the support.

MCL32 FW_Aus_highlight

McLaren’s pace in the final sector in Barcelona shows that their chassis is reasonable, certainly above the other midfield runners but not quite there with the top dogs. The team’s aero department are constantly churning out alterations to the car – the front wing is tweaked almost every race weekend.

FW40_FW_China

The FW40 isn’t a striking car in design terms but the chassis clearly works cohesively on both aerodynamic and mechanical fronts. The above front wing was altered twice within the same amount of weeks between Australia and China.  

SF70H_FW comparison_annotations

Ferrari’s development rate has been refreshing in 2017. In Bahrain the Scuderia introduced their front wing proper for the season (left), featuring six elements cutting the entire span and a more pronounced vortex tunnel.

vjm10_bargeboards

Pretty in pink: It doesn’t matter what colour the Force India is in, the team continue to punch well above their weight despite the regulation changes. The design office is creative and not afraid to produce complex geometries such as their bargeboards and splitter above.

w08RW_spain

Mercedes unleashed an extensive aerodynamic overhaul to the W08 in Barcelona. The nose, bargeboards and engine cover were heavily revised while the spoon-shaped rear wing was ousted for a conventional design. A monkey seat winglet straddles the rear crash structure to draw the exhaust plume upwards.

RB13_bargeboard

Red Bull’s ‘struggles’ has pushed Adrian Newey back into action, although it would be unfair to say that they got the car wrong. The RB13’s clean design leans more towards drag reduction than outright downforce and the car is often up top of the speed trap charts. More complex bargeboards arrived in Spain – is this the start of their come back?

Tech Highlights: McLaren-Honda front wing and powertrain problems

IMG_1821

If you haven’t already caught some of my tech analysis in the past couple of Motorsport Monday magazines then here’s your first glimpse of some: I dissect McLaren’s new front wing (only on Alonso’s car) and also explain what is going wrong (again) with the MCL32 powertrain – it’s not all Honda’s fault! You can also find some mini-articles on developments from Australia on the Motorsport Week website.

Also, a quick question I would really appreciate some responses to: Would anyone be interested in buying a print of one of my many illustrations? Obviously we don’t all want a framed McLaren front wing but something more like the Mercedes W05 below might take your fancy.

Mercedes W05 review

Leave a comment on your thoughts, please! 🙂

Tech Highlights: Mercedes/Red Bull ‘energy recovery’ suspension

If you haven’t heard already, F1 is set to ban the hydraulic heave springs that many teams (notably Mercedes) have been playing with over the past 12-15 months. Although it is not an official ban as yet, a technical directive has been issued to the teams addressing the claims that Ferrari raised in a recent letter to the FIA. Ferrari claims that the component can be classed under the ‘moveable aerodynamics’ catch-all phrase in the regulations, and although it has been discussed in great length over the year it is only now that the Scuderia have chosen to make a formal move against the competition. In this blog post we will aim to cover what the hydraulic heave element does and why a ban at this stage of the 2017 developments could have an impact on the pecking order. Continue reading

Goodwood FoS tech blog!

IMG_0944

Time to kick this blog back into life a little now that I’m free for summer, and what better a way of doing so than looking at some of the great tech on display at the Goodwood Festival of Speed. This year’s festival was probably the best one I’ve been to out of the four or five times I’ve visited, not least because we had a great spot on the hillclimb to view the cars – on the inside of Molecomb corner along the braking zone right by the hay bales. Mercedes brought the W05 F1 car too, making them the first team to use a new hybrid-era car for demo purposes.

IMG_0935

First stop was the FIA stand, which was filled with some interesting information about motorsport in general as well as a few desirable racing cars.

I knew what was going to be on display there, too – the halo concept that F1 wants to introduce next season was the first thing that caught my attention as I approached. Unfortunately, rather than putting in the effort of actually integrating the halo with the car, the structure had clearly been pinched from Ferrari (they tested it pre-season) and quite literally been stuck to an old monocoque.

Continue reading

Tech Highlights: Mercedes S-duct

One of the key design features of this year’s Mercedes W07 is the introduction of an S-duct. The S-duct was first seen in 2012, with Sauber using it as a way to manage airflow over the stepped nose. The idea was that airflow would be less likely to detach from the chassis if air was introduced behind the step. This was done by channeling airflow from underneath the car to a vent exiting backwards above the front bulkhead via an s-shaped duct in the nosebox, hence the term S-duct.

Continue reading