Analysis: AM-RB 001

I don’t know about you but since the news that Red Bull’s F1 design guru Adrian Newey was teaming up with Aston Martin for a ‘new project’, I’ve been waiting with baited breath as to what kind of machine the two could produce together. Despite the lengthy wait, nothing could quite prepare any of us for what we saw when the AM-RB 001 prototype was showcased in early July.

AM-RB 001

 

Once launched the codename will be changed to something more elegant (and probably beginning with a ‘V’) but no doubt the bold body shapes that make it the eye catching will remain. It’s a little Marmite (personally I love it) however every carbon fibre-formed surface has been meticulously sculpted on CAE software to produce a car that meets Newey’s intense focus on aerodynamics.

Whilst most of the technical details haven’t been revealed, this blog post aims to cover some of the aerodynamic features of the car’s body, shrink-wrapped around the mid-mounted naturally aspirated V12 engine at its core. Although Swedish car company Koenigsegg have already achieved this, Aston Martin and Newey also target a 1:1 ratio for the 2018 launch – that is one bhp per one kilo of weight.

The aerodynamic features of this car – even compared to existing hypercars such as the McLaren P1 and Ferrari LaFerrari – are remarkable. Unlike a conventional hypercar car where the driver sits virtually on the ground, the core of the AM-RB has been removed to create a venturi tunnel for air to pass right through. The advantages of doing this were explored when Nissan entered Le Mans last year, see my analysis of their car entry here.

The front splitter resembles more of a wing than anything else, with each of its two elements arcing to meet the footplate at its extremities. This is almost identical to what the Red Bull F1 team have been doing for some time as a way to generate vortices around the front tyre. However, the wing on the AM-RB sits within the front wheel track so the vortex generated will instead offset turbulence generated by the front tyre away from the completely smooth underbody to produce a greater venturi effect.

Both the edges of the splitter and the sides of the car feature the arched footplate geometry that we see frequently in motorsport. As the air progresses along the ‘tunnel’ it speeds up, creating a pressure difference that causes airflow to migrate from the top of the plate to the lower edge. This in turn generates vortices that are aimed at controlling tyre wake, hence why this bodywork is seen ahead of both the front and rear wheels of the car.

Air intakes sprout from the elegant doors, the flow that feeds them passing through the inside of the car via large turning vanes – the kind you see hanging beneath the chassis of an F1 car but much bigger – behind the front wheels.

At the rear, the centre of the car has been pulled out and upwards to complete the venturi tunnel, with curved end fences concealing the inside face of the rear tyres and carbon bodywork covering the half shafts and differential for maximum efficiency. A minimal twin element rear wing lies along the top, lipped at the middle, to further entice airflow out from beneath.

Quite how many of these features will exist on the road going version of the car is unclear but I sincerely hope it’s all of them.

Goodwood FoS tech blog!

IMG_0944

Time to kick this blog back into life a little now that I’m free for summer, and what better a way of doing so than looking at some of the great tech on display at the Goodwood Festival of Speed. This year’s festival was probably the best one I’ve been to out of the four or five times I’ve visited, not least because we had a great spot on the hillclimb to view the cars – on the inside of Molecomb corner along the braking zone right by the hay bales. Mercedes brought the W05 F1 car too, making them the first team to use a new hybrid-era car for demo purposes.

IMG_0935

First stop was the FIA stand, which was filled with some interesting information about motorsport in general as well as a few desirable racing cars.

I knew what was going to be on display there, too – the halo concept that F1 wants to introduce next season was the first thing that caught my attention as I approached. Unfortunately, rather than putting in the effort of actually integrating the halo with the car, the structure had clearly been pinched from Ferrari (they tested it pre-season) and quite literally been stuck to an old monocoque.

Continue reading

Analysis: What will F1 2017 look like?

2017 side & plan

It’s been a while since I’ve posted (lots of university assignments/exam preparations going on lately) but I’ve once again teamed up with F1 Fanatic to inform you about the 2017 F1 technical regulations overhaul.

The changes are pretty widespread: bringing back the 2 metre overall width from pre-1998; larger tyres; delta-shaped front wings – there’s a lot to talk about! You can find this fairly comprehensive analysis about all the changes here. Thanks to their helpful image sliders we are able to compare the 2016 car with next year’s in a side-by-side comparison too, which looks pretty cool.

I don’t think there are many other people who have done something similar since the regulations were officially published at the end of April, so go check it out and let me know what you think about the rule changes in the comments!

Tech Highlights: Mercedes S-duct

One of the key design features of this year’s Mercedes W07 is the introduction of an S-duct. The S-duct was first seen in 2012, with Sauber using it as a way to manage airflow over the stepped nose. The idea was that airflow would be less likely to detach from the chassis if air was introduced behind the step. This was done by channeling airflow from underneath the car to a vent exiting backwards above the front bulkhead via an s-shaped duct in the nosebox, hence the term S-duct.

Continue reading

Why working in F1 is not my dream job…

B195654-2--Design-Office--4-

MOTORSPORT – CORPORATE 2010 – RENAULT F1 – PRISES DE VUES – VIRY (FRA) – 28/09/2010 – PHOTO : FREDERIC LE FLOC H / DPPI

If you came up to me a couple of years ago and asked where I wanted to be working in the future there was only one answer: a design engineer in Formula 1. I wanted to graduate from university, dive straight into the design office of an F1 team and get stuck in – the idea of climbing the ladder and reaching the top ranks of a top team such as Ferrari or McLaren was exciting, even if I knew the dream would take years to achieve.

I admire those who are already at the top of the engineering pyramid in the sport. Adrian Newey, Paddy Lowe, James Allison and Ross Brawn to name a few who have cut it at the top of the pinnacle of motorsport. I wanted to replicate their success and have a profound impact on F1 and motor racing in general. You could argue that I, or anyone else who has the same ambition and drive, can still do exactly that. However I have been slowly taking backwards steps to see the bigger picture and I am realising that perhaps this is not possible in the way the engineers above have achieved.

Hundreds of people make up F1 teams in this era. Take Mercedes as an example: Over 500 people work on the power units alone, plus a further 500 on the chassis. Rewind 30 years ago and this number was perhaps 50, budget depending. This naturally means that anyone walking into the sport now will have a tougher time making a name for themselves than they would have done previously. Yes, F1 is a team sport, but who doesn’t want to be at the heart of it, driving development forward and leading a team into the history books? Continue reading

Tech Highlights: Mercedes’s complex bodywork

With just two weeks of pre-season testing the teams have had an incredibly tough time making sure not only that their new cars run reliably and that they correlate with what the data has shown back at the factory, but also assessing new components ahead of the first race.

Mercedes covered over 3,500 miles across both tests in Barcelona, putting one of the sport’s biggest outfits in the prime position to try out some aggressive concepts well before the season opener in Melbourne. During the second week the W07 was clad with plenty of complex devices, particularly around the sidepod area.

W07Boards

Continue reading

Tech Analysis of ALL 2016 cars!

As you may (or may not) know, all of my technical analysis pieces for the 2016 F1 cars are up on F1 Fanatic this year. However I’ve made it really easy for you to find your favourite car/team by linking them all in this post! So here you are – enjoy!

  • Mercedes W07 – Can the World Champions continue their winning streak?
  • Ferrari SF16-H – Ferrari’s bold winter strategy could bring them a step closer to the Mercs
  • Williams FW38 – The FW38 is arguably the most important car for Williams in a long time
  • Red Bull RB12 – 2016 may be a stop-gap for the Bulls, but don’t discount them for a podium
  • Force India VJM09 – Will Force India be able to keep pace with the bigger budget teams?
  • Renault R.S.16 – It’s Renault’s first year back as a Constructor, so how will the R.S.16 fare?
  • Toro Rosso STR11 – Arguably the boldest car on the grid, Toro Rosso mean business in 2016
  • Sauber C35 – Sauber have their eyes on 2017, but the C35 is nonetheless a solid evolution
  • McLaren MP4-31 – Time to step up, McLaren, and the new car shows it
  • Manor Racing MRT05 – Now with Mercedes propulsion, can Manor fight for points?
  • Haas VF-16 – Debutants Haas have gone down the listed parts strategy. And it could work!

Note: This post will be updated as the articles are released.